

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 43 -

Tracing Requirements in Object-Oriented Software
Engineering

Ali S. Dowa. faculty of Information Technology, Azawia
Zawia University

Amrou S. Dhunnis , faculty of Information Technology
Zawia University

Mahmoud J. Abdullah , Computer Science Department,
faculty of science , Zawia University.

Abstract:
Software system maintenance is a fact that plays a major role in

software development life cycle. Software does change and evolve during
maintenance or creation of another version or adding up new requirements
or features onto existing software. Capturing the traceability relations
between software requirement and design allows developers to check
whether the design meets the requirement and to analyze the impact of
requirement changes on the design .

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 44 -

This paper aims at describing an approach to generate relations
between different types of software artifacts through object-oriented
software development life cycle.. A prototype software has been developed
to demonstrate the feasibility of the approach. Encouraging results of the
feasibility and consistency of the software is obtained.

1. Introduction:
During their usage, software system requirements have to be

changed, not only after releasing the product but also along the iterative
software development process. Tracing requirements change during
software system development is an important factor to ease software
development, maintenance, evolution and maintain high quality software
system`[4].

Requirement traceability shows how one artifact is related to another
by following the life of its requirements during each stage of the software
development process in both forward and backward direction [6] [page no].

In general, requirements traceability helps software developers to
find the impact of changes in requirement statement on other artifacts in
subsequent phases in software development process [7, 9].

At each stage of the object-oriented software development process,
different models are produced. Engineering community adapted the Unified
Modeling Language (UML) as its standard means for representing and
documenting software system models and related artifacts [5,10]. The basic
models produced during the object oriented software development process
are:

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 45 -

 System requirements: define functional and non-functional
requirements of a software system that are generated during the
requirements engineering process, and it is expressed in natural
language.

 Analysis model: Concerned with developing software engineering
requirements and specifications that expressed as a system's object
model, which is composed of a population of interacting objects .The
analysis model contains the analysis classes and any associated
artifacts.

 Design model: The design model can be thought of in two phases.
The first, called high-level design which deals with the
decomposition of the system into large and complex objects. The
second phase is called low-level design. In this phase, attributes and
methods are specified at the level of individual objects.

 Implementation model: defines components that representing source
code (translate the solution domain model into source code)

These artifacts can be related and traced to each other via some
relationships among them [6,8,10,11].

In this work an approach is proposed and described to support
automatic generation of traceability relations between functional
requirements (expressed in natural language) and other artifacts produced
during the analysis model in the object oriented software development
process (that expressed in UML diagrams).

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 46 -

2. Overview of a Prototype Software :
The main objective is to build a software tool that automatically

generates the relations between software artifacts produced during object-
oriented system development, and visually presenting them to software
developer. The input of this tool is the software system documents which
include the requirements and analysis models. The output is a visual
representation of relations of software artifacts

3. Approach:
In the software development process, the object-oriented analysis

and design methodologies usually use nouns and verbs to indicate either
classes or actions [3].

In case of the analysis stage of object-oriented system development,
nouns are found in a requirement statement model as either class names or
attributes of a class, and verbs model as operations of a class, use-case
name [1,2].

Therefore, those concepts (nouns and verbs) are used by the
proposed software to automatically generate the relations among a
requirement statements and other artifact in subsequent phases of the
object-oriented system development process.

Therefore both concepts which are used by software to establish
relations among different artifacts of software devilment process can be
summarized as follows:

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 47 -

Concept-1:

Concept-2:

In accordance with the first concept, when a noun is located in a

requirement statement, our software tool will search for a match between
the noun and class names in analysis models.

According to the second concept, when a verb is located in a
requirement statement, the software tool searches for a match between that
verb and the names of use-case in the use-case model.

In both cases, when a match is found a relationship is established
between a requirement statement and a matched artifact.

4. The Analysis of Prototype Software:
The use case model shown in Figure-1 describes the main

functionality of the software.

If there is a matching between a verbs in a requirement statement with an

artifact (use-case-name) in the use cases model then a relation is generated

between them.

If there is a matching between nouns in a requirement statement with an

artifact (class-name) in the analysis model then a relation is generated

between them.

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 48 -

4.1 The Tagging Use-Case:
This use case is executed as follows:

 Reading text file of requirement statements.

 Using grammatical tagger to produce tagged form of the text file.

 Analyzing the tagged form of the text file to extract needed
information from the requirement statement such as, (nouns, verbs).

 Organizing and storing the extracted information in a repository.

Figure 1: Use-Case Model of Software Prototype

Taging

Software Tool

User

Display media

Convert
Diagrams

Generate
Relations

Visualize

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 49 -

4.2 The Convert Diagrams Use-Case:
This use case is executed as follows:

 Reading UML files, which include several diagrams such as:

 Use-case diagram.

 Class diagram.

 Using existing commercial exporter to convert the UML diagram to
textual information.

 Storing the textual information in a storage repository.

4.3 The Generate Relations Use-Case:
This use case executed as follow:

 Read extracted information (nouns and verbs) from repository.

 Read converted textual information of UML models.

 Match each noun with class names in analysis models and class
names and attributes of classes in the design model.

 Match each verb with names of use-cases in the analysis model, class
operations, and names of sequence diagrams in the design model.

 Establish a relation when a match is found.

 Store established relations in the storage repository.

4.4 The Visualize Use-Case:
In this use-case when a requirement statement is selected, the use-

case retrieves information from the repository and displays the relations

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 50 -

between a requirement statement and other artifacts resulted from
subsequent phases of the object-oriented system development process.

5. The Packages of Prototype Software:
Figure-2 shows how the tool is organized in different components

(Analyzer, Extractor, Repository, Relations Generator and Visualizer) that
work together to achieve the functionality of the tool.

Software
prototype

Repository

Extractor

Analyzer

Visualizer

Relations
Generator

Figure 2: The interacted packages of the tool

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 51 -

6. The Proposed Prototype Software :
The implementation of the prototype system is done to test the

visibility of the proposed approach to generate traceability relations, it can
also be used to test the consistency between automatic and manual
generation of the traceability relations.

7. Evaluation Method :
A case study of a Registration Student System that is available in the

software literature is used for the evaluation.

The manual analysis of this case study documentations which will be
used to measure the results of software prototype is obtained from Software
Engineering text books [10].

8. Evaluation Results:
Table-1 illustrates the comparison between the results obtained from

software prototype and the manual analysis of the case study.
Reqnt.ID

Used manner

Traced Use
Cases

Traced
Analysis
Classes

Traced
Attributes Traced Operations

1
Manually 1 3 7 4

By the Software 1 3 6 2

2
Manually 1 2 7 3

By the Software 1 2 7 3

3
Manually - 2 7 3

By the Software - 2 7 3

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 52 -

Reqnt.ID

Used manner

Traced Use
Cases

Traced
Analysis
Classes

Traced
Attributes Traced Operations

4
Manually 1 2 7 3

By the Software 1 2 7 3

5
Manually 2 5 11 8

By the Software 2 5 11 8

6
Manually 1 4 9 3

By the Software 1 4 9 3

7
Manually - - - -

By the Software - - - -
Table 1: Comparison between the results obtained from the and the manual analysis of the case study.

9. Discussion:
As noticed from the table-1, the results are equivalent in most cases,

with the exception of some cases such as:

 Traced attributes :

In Requirement-1, according to the manual analysis there are seven
attributes traced to this requirement, our software discover six attributes
traced to this requirement.

 Traced operations :

Based on the manual analysis Requirement-1, , there are four
operations traced to this requirement, the software discovers only two
traced operations.

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 53 -

10. Consistency:
Table-2 illustrates the consistency of the results that produced in case

study.

Traced Artifacts of
Case Study

Traced Use
Cases

Traced Analysis
Classes

Traced Attributes Traced Operations

Manual

vs.

By the Software

100% 100% 97.5% 91.66%

Table 2: Consistency of the results of a case study

11. Conclusion :
In this work, an approach has been presented and implemented as a

prototype case tool, which automatically generates relations between
software artifacts produced during the system development process, using
object-oriented approach. This software tool visually represents these
generated relations to the developer.

12. Future Work:
Our discussion shows there is a place for more future improvements;

these improvements can be summarized as follows:

 Working on Links requirements with its artifacts, in the other phases
of software development process.

 Address the problem of the verbs inflection, which will improve the
tool to discover additional operations from requirement statements.

Tracing Requirements in Object-Oriented Software Engineering ـــ

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 54 -

 This tool can be used to trace the artifacts of Arabic software
requirements, if it used with Arabic Part-of-Speech Tagger.

References :
[1] Brill tagger, http://www.ling.gu.se/~lager/mogul/brill-tagger/ , The

Brill tagger is a method for doing part-of-speech tagging, date
accessed November 2015.

[2] Bruegge, B., and Dutoit, A.,"Object-Oriented software engineering
Using UML, Patterns, and Java", Pearson Edducation, Inc 2004.

[3] Jacobson, I., et al., "The Unified Software Development Process",
Addison Wesley Longman, Inc, 1999.

[4] Leffingwell, D., and widring, D., "Managing Software Requirements"
Pearson Edducation, Inc, 2003.

[5] Ramesh, B., and Jarke, M., "Toward Reference Models for
Requirements Traceability", Georgia State University, 2001.

[6] Sherba, S., and Anderson, K., "A Framework for Mapping
Traceability Relationships ", University of Colorado, 2003

[7] Stepanian, L., "Solving the Requirements Traceability Problem",
University of Toronto, 2004.

[8] Weiss, D., and Kowalczykiewicz, K., "Traceability: Taming
uncontrolled change in software development", Poznań University of
Technology, 2002.

[9] Project Management Software, www.projectperfect.com.au, Version
5.1 released in December 2007, date accessed March 2009

ــ ????????

University Bulletin – ISSUE No.18- Vol. (3) – August - 2016. - 55 -

[10] Jacobson, I., et al., "The Unified Software Development Process",
Addison Wesley Longman, Inc, 1999.

[11] JUDE Development Group, http://jude.change-vision.com/jude-
web/product/index.html, the JUDE UML modeling Tool, date
accessed November 2015.

