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Abstract:

Generalization of rough set model is an important aspect of rough set
theory research. In this paper, we use atopological concepts to introduce a
generalization of Pawlak approximation space. Concepts of definability for
subsets in topological approximation spaces are introduced.

Several types of approximations which called pre approximations are
mathematical tools to modify the approximations. In this paper we

introduce the pre exactness and pre roughness by applying the
concepts of pre open sets to make more accuracy for definability of sets,
and we present new types of rough definability and rough undefinability
based on these approximations.
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Introduction:

Rough set theory, introduced by Pawlak in 1982 [14], is a
mathematical tool that supports also the uncertainty reasoning but
qualitatively. Rough set theory has a wide variety of applications. It can be
used for information preserving data reduction, representation of uncertain
or 1imprecise knowledge, concept classification, machine learning,
knowledge discovery, data mining [20] economics [8], medical diagnosis
[13], and others [21]. A basic notion of rough set theory is the lower and
upper approximation, or approximation operators [14, 15, 23].

This theory can be developed in at least two different manners, the
constructive and algebraic methods [24]. The constructive methods [16, 14]
define rough set approximation operators using equivalence relations or
their induced partitions and subsystems; the algebraic methods treat
approximation operators as abstract operators. There are several definitions
of constructive methods, commonly known as the element based, granule
based [18, 26], and subsystem based definitions [24,27]. Each of them
offers a unique interpretation of the theory.

Rough set theory in topological spaces is an important type of
generalized rough set models. This model open the way for applying rich
notions and results in the theory of topological spaces in the context of
generalized rough set models.

In this paper, we introduce new types of rough definability and
undefinability, based on the notions of pre lower and pre upper
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approximations and study the relations between them. We obtain
eight kinds of rough definability and undefinability instead of four in case
of Pawlak approximations.

1- Prerough and preexact sets:

The present section is devoted to introduce the pre exactness and
preroughness by applying the concepts of pre open sets to make more
accuracy for definability of sets. Let X be a subset, then X is exact if

BN (X) = &, otherwise X is rough [4]. We shell express pre rough set
properties in terms of topological concepts. X is preexact (briefly,

P-exact) set if BNp(X) = @, otherwise X is pre rough (briefly, P-rough). It
is clear that X is P-exact iff P(X) = P(X). The pawlak space subset X has
two possibilities, rough or exact. The following definitions introduce

new types of definability for a subset X S U in general topological space

(U,T).

Definition 1.1

X is said to be preexact if P(X) = P(X), otherwise X is said to be
prerough.

Definition 1.2
Let K = (U,R) be a general knowledge base and X € U, R € R, then

(1) X isR — definable iff R(X) = R(X), otherwise X is non definable
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or rough.
(2) X is pre R — definable iff P(X) = P(X), otherwise X is non pre

definable or pre rough.

Proposition 1.1

Let (U, R) be a general approximation space and X € U. If X is

exact, then X is pre-exact.

Proof

Let X be an exact set, then R(X) = X = R(X). Now
RX)=N{FCUXCF&FeT}2N{FCU:XCF&F e PCX)},
since T¢ € PC(X) = P(X).Also
RX)=U{GCSU:GSX&GET}CU{GCSU:GSX&G € POX)},
since € PO(X) = P(X).

There for, R(X) S P(X) € X < P(X) € R(X). Since X is exact we get
PX)=X= P(X), hence X is P-exact.

The converse of the above proposition is not true in general as the
following example illustrates.

Example 1.2
LetU = {a,b,c,d},R = {(a,a),(b,b), (b, c),(b,d)},
S ={{a},{b,c,d3}}, B ={U,®,{a}, {b,c,d}},
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T ={U, & {a},{b,c,d}}, TC(X) ={U,,{b,c,d}, {a}} &

if X=1{a,b}=R(X)=1{a}, R(X)=U, that is X is a rough set.
ButP(X) =X nR(R(X)) =X, P(X) =X UR (R(X)) = X, that is X is

preexact set.

Proposition 1.2

Let (U, R) be a general knowledge base andX < U. If X is R-exact, then X
is pre R-exact.

Proof

If R(X) = R(X), then P(X) =X N R (E(X)) =XNR (g(x))
= X NR(X) =X,

P(X)=XU E(g(x)) = XU E(E(X)) — XURX) = X.

ie. P(X) = P(X).

The following example shows that the converse of the previous
proposition is not in general true.

Example 1.3

Let U ={a,b,c,d} and R be a general relation on U such that R =
{(a,a),(a,b),(d,d)}, has the following -class, % =S={{a,b},{d}}
& B ={U,&,{a b} {d}}, T ={U,® {a b}, {d},{a b, d}},
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TC — {U, ®,{c,d},{a,b,c}, {c}}, if X={a,cd}, then RX)=U=
P(X) = {a,c,d}. Also,

R(X) = {d},E(E(X)) ={c,d} = P(X) ={a,c,d} ie P(X)=P(X),
but R(X) # R(X).

Proposition 1.3

Let K = (U,R) be a general knowledge base and X,Y € U and

R € R, If X and Y are R — definable then:
(DRX UY) =R(X) UR().
2)R(X NY) = R(X) NR(Y).
() P(X N Y)=P(X) n P(Y).
(4) PX UY)=P(X) U P(Y).
(5) P(X UY)=P(X) UP(Y).
6)P (X NY)=P(X) NnP(Y).
Proof
(DRXUY)2R(X) UR(Y).
On other hand R(X) UR(Y) = R(X) N R(Y), (since X & Y are
R —definable)
=R(XUY)
DR(XUY).SoR(XUY)=R(X)UR(Y).
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(2) Similar proof as (1).

B)P(XNnY) < P(X)nP(Y), by (Proposition 1.4). On the other hand

we have

PX)NPY) SRX) NRY)=RX)NRY) =RXNY)SPXNY).

(4) Similar proof as (1).

(5) R(XUY) 2 R(X) UR(Y). On the other hand we have
P(X)UP(XY)2R(X)URY)=R(X)UR(Y)=R(XUY)

DP(XUY).

(6) Similar proof as (5).

The following definition interprets some kinds of definability called

one sided definability.

Definition 1.3

Let K = (U,R) be a general knowledge base, X € U & R € R.

(1) X is totally R — definable (exact) set if R(X) = X = R(X).

(2) X is internally R — definable set if R(X) = X,R(X) # X.

(3) X is externally R — definable set if R(X) = X,R(X) # X.

(4) X is pre-totally R — definable (pre-exact) set if PX =X = PX.
(5) X is pre-internally R — definable set if PX =X, PX # X.

(6) X is pre-externally R — definable set if PX =X, PX + X.
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(7) X is R — indefinable (rough) set if RX # X,RX # X.
(8) X is pre R — definable (pre rough) set if PX # X, PX + X.

The following propositions illustrate the relationship between one and two
sided definability.

Proposition 1.4
Let K = (U,R) be a general knowledge base, X € U & R €R.

(1) X is R-definable iff X is internally R- definable and externally
R-definable.

(2) X 1s pre R-definable iff X is pre-internally R- definable and pre-
externally R-definable.

Proof
Follows immediately by Definitions 1.2 and 1.3.

Remark 1.1

If X is internally (pre-internally) or externally (pre-externally) R —
definable so X is R — definable (pre—definable ) is not in general true.

The following example shows this idea.

Example 1.4

LetU = {a,b,c,d,e } and R be a general relation onU defined as

R ={(a,a),(a,c),(c,b),(c,c),(c,ad), (e a),(ee)}
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S = {{a, c}{b,c,d},{a, e}}, B = {U, ®,{a,c},{b,c d},{a, e} {c}, {a}},
T = {U, ®,{a,c},{b,c d}{a e} {c}{a},{a,c e} {a,b,c, d}},

T¢ ={U,®,{b,d, e}, {a,e},{b,c,d},{a,b,d, e}, {b,c,d, e}, {b,d} {e}}.
LetX = {a,b,c}, then R(X) = U,R (R(X)) = U &

P(X)=XNR (E(X)) = X. On other hand

R(X) = {a,c}R(R(X)) =U&PX =X UR(R(X)) =U =

P(X) # PX.

LetX = {x;, %4, X5}, then R(X) = {xy, x5}, R (RCN) ) = {1, x5} &
PX = X.

On other hand R(X) = {xy, x,, x4, x5 }&P (X) = {xq, x5} # PX.

The following proposition illustrates the relation between one sided

R-definable and one sided pre R- definability .

Proposition 1.5

Let K = (U,R) be a general knowledge base, X € U and R €R.
(1) If X is internally R — definable, then X is pre-internally
R —definable.

(2) If X 1s externally R — definable, then X is pre-externally
R — definable.

University Bulletin — ISSUE No.18- Vol. (3) — August - 2016.




Preroughness And Preexactness in Topological Spaces

Proof

(1) IfR(X) = X & R(X) # X, since R(X) € P(X) € X, then
P(X)=X&P(X)=XUR (g(x)) — XUR(X) = R(X), i.e.P(X) # X.
Hence X is pre-internally — definable.

(2) IfR(X) # X & R(X) = X, since X € P(X) € R(X), then P(X) = X

& P(X)= XnR(RX)) = X nR(X) = R(X), ie. P(X) # X. Hence X

is pre-externally R- definable.

In the following example we show that the converse of the previous
proposition is not in general true.

Example 1.5

LetU = {a,b,c,d,e } and R be a general relation on U defined as in
(Example 1.4) & ifX ={a,b,c}, thenR(X) ={a,c}, P(X) =X, but
R(X) # X, i.e. P(X) = X does not in general imply that R(X) = X.

Also if X={ade}, thenR(X)={a,b,d, e}, E(E(X)) ={a,e} &
PX = X,but R(X) # X.

i.e.PX = X dose not in general imply that R(X) # X

The following definition introduces other types of definability based on the
notions of lower and upper approximations beside prelower and preupper
approximations.

University Bulletin — ISSUE No.18- Vol. (3) — August - 2016.




Rukaia M. Rashed-

Definition 1.4

Let K = (U, R) be a general knowledge base, X € U & R € R.

(1) X is roughly R — definableset if R(X) # & & R(X) # U.

(2) X is pre roughly R — definableset if P(X) # ® & P(X) # U.

(3) X is internally R — undefinable set if R(X) = ® & R(X) # U.

(4) X is pre-internally R — undefinable setif P(X) = @ &P(X) + U.
(5) X is externally R — undefinable setif R(X) # ® & R(X) = U.

(6) X is pre-externally R — undefinable if PX # ® & P(X) = U.

(7) X is totally R — undefinable If R(X) = ® &RX = U.

(8) X is pre-totally R — undefinable if PX = ® & PX = U.

The following proposition indicates the relation between the previous types

of undefinability.

Proposition 1.6

Let K = (U,R) be a general knowledge base, X € U and R € R.

(1) X is roughly R — definable iff X is pre roughly R — definable.
(2) X 1s pre-totally R — undefinable iif X is totally R — undefinable.
(3) X is pre-internally R — undefinable iif X is internally

R —undefinable.

(4) X 1s pre-externally R — undefinable iif X is externally
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R —undefinable .

Proof

(1) = Suppose that X is roughly R — definable, then R(X) # @
&R(X) #U.

Since R(X) S PX < PX <cR(X), thenPX # ® &PX # U, ie. X is
preroughly R — definable.

<Suppose that PX # @ & PX # U, since ifRX) = = PX =
Xuﬁ(g(x)) + U:Xuﬁ(g(x)) —P =X =0,

a contradiction so R(X) # ® & ifR(X) = U
PX=XnR(RX))#®=XnR(RX))=VieXnU="U,

a contradiction so R(X) # U.

(2) = Suppose that X is pre-totally R — undefinable

ie. PX = ® & PX = U, we show that R(X) = ® & R(X) = U,

since R(X) € PX c PX cR(X) = RX=® & RX=U.

& Suppose that X is totallyR — undefinable i.c.R(X) = ® &

R(X) = U, we show that PX = ® & PX = U, if PX # & = Xn
E(E(X)) 0= Xn Q(E(X)) —U,ie.XNnU=U,

a contradiction so PX = ® & if PX # U = X UE(E(X)) +U =

XU E(E(X)) = @ i.e. X = &, a contradiction so PX = U.
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(3) (=) Suppose that PX = & & PX #U, thenR(X)c PX = @, i.e.
R(X) = @ & suppose that R(X) = U, then

PX =X nE(E(X)) = X N U = U, a contradictions so R(X) # U.

(<) Suppose that R(X) = @ & R(X) # U, then we show that PX=0&
PX + U,ifgxqtcp:)mg(ﬁ(x)) ¢¢=>Xn§(§(x)) —U

= R(X) = U, a contradiction so PX = @&, and ifPX=U=

X UE(E(X)) = U = X = U, a contradiction so PX # U.

(4) (=) Suppose that PX # & & PX =U, since PXZR(X), then

R(X) =U& ifR(X)=® = PX=XU E(g(x)) = X,

a contradictions so R(X) # .

(<) Suppose that R(X) + @ & R(X) = U, and show that PX+ & &
PX =U, since R(X) c PX,so PX # ® & if PX # U =

XuE(E(X)) U ie. Xuﬁ(g(x)) - U = Xuﬁ(g(x)) -0 =

E(E(X)) = @,i.e.R(X) = &, a contradictions so PX =U.

Proposition 1.7
Let K = (U,R) be a general knowledge base, X € U and R € R.

(1) Aset X is R — definable (roughly R — definable, totally
R —undefible) iff so X€.
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(2) A set X is externally (internally) R — undefible if X¢ is internally
(externally) R — undifible.

Proof

(1) If X is R — definable then R(X) # ® & R(X) # U, we show that
RX)#+ @ ,R(XC)#U

_ C _
Since R(X) # ® = R(X) = (R(XC)) + ® = R(X%) # U, and since
RX) U=

— Cc
R(X) = (R(XY)) # U= R(X®) # ®ie. XC is R- definble.

Also if X is totally R — undefinable then R(X) = ® & R(X) = U, we
show that R(X®) = &, &R(X®) = U since R(X) = & =

(E(xC))C = ® = R(X) = U. And since R(X) = U =
(RX9)) = U= RO = 0.
(2) X is externally R — undefinable & X¢ is internally
R — undefinable = R(X) # @
&R(X)=U o RX) =0 & RX®) U =
RX)# ¢ o (E(XC))C +® < RXY) % U& RX)=Ue

(RX9)) =& = R = 0.
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Also X is internally R — undefinable- < X¢ is externally

R —undefinable =
RX) =0 o (E(XC))C —UsREXS)=U &R(X) £ U &

(E(XC))C £® < R(XC) # o.

Proposition 1.8

Let K = (U,R) be a general knowledge base, X € U and R € R.

(1) A set X is preR-definable (preroughly R — definable, pre-totally
R —undefinable) iff so XC.

(2) A set X is pre-externally (pre-internally) R- undefinable iff X¢ is pre
internally (pre-externally) R- undefinable.

Proof

Similar proof as Proposition 1.7.
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