

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 59

Tradeoff in Optimistic Concurrency Control

Algorithms for Centralized Database Systems

Dr. Kamal M. Solaiman
1
,Tarik Idbeaa

1
, Dr. Tariq Khalifa

1
, Dr. Ayad A. Keshlaf

2

1
School of Science , Al Jabal Al Gharbi University

2
 Industrial Research Center, Tripoli

Abstract:

Optimistic concurrency control is widely studied in the literature due

to the properties of non-blocking and deadlock free execution especially in

the domain of real-time systems. In this paper we review the substantial

research of optimistic concurrency control protocols. We characterize them

into four categories and explore their properties. Then we investigate the

general concepts and properties related to Optimistic concurrency control.

Finally, we demonstrate a comparison table between the varieties of these

protocols.

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 60

Keywords: Optimistic concurrency control; real-time system;

Serializability; Rollback; Starvation

I. Introduction

Concurrency control is a mechanism for coordinating access to

shared data in order to prevent any unexpected results and maintain

consistency. Two important concurrency control approaches have been

investigated in the literature: Pessimistic Concurrency Control(PCC) and

Optimistic Concurrency Control(OCC). PCC is based on mutual exclusion.

Shared data locked by only one process to prevent other processes from

accessing it. When this process finishes execution, all data locked by this

process will be released[1]. OCC reduces locking overhead by allowing

multiple uncontrolled reads to share the data. New updates are thereby

checked to prevent conflicts between them; if new updates violate state

consistency, these updates will be canceled. If new updates maintain

consistency, then these updates can be copied to the original database [2].

OCC was an attractive solution because of the properties of non-blocking

and deadlock free execution (especially in real-time systems). Performance

evolution studies of OCC techniques can be found in [3-8].

Serializability property is maintained to ensure database

consistency[2, 9]. The serializability means that there is at least one serial

schedule that leads to the same final state of database[10-12]. The rest of

the paper is organized as following: Section 2 classifies the main

approaches of OCCPs. Section 3 introduces variety of OCC concepts and

properties.

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 61

Section 4 presents the comparison criteria tables. Discussion is

presented in section 5. And finally the conclusion and future work

presented in section 6.

II. Optimistic concurrency control protocols (OCCPs):

OCCPs are designed to achieve a reduction of locking overhead.

They rely explicitly on the assumption that conflicts between concurrent

transactions infrequently occur. The earliest optimistic concurrency control

protocol has been introduced by Kung and Robinson[2]. In this protocol

transaction execution time is divided into three phases (read phase,

validation phase and write phase). During the read phase, transactions

access data without any restrictions, making copies of original data in their

private workspace (read set). In the validation phase, after a transaction has

read all data and all computation has been done, a resolution policy has to

be applied to ensure serializability. If no conflicts between concurrently

running transactions have been detected, then the transaction progresses to

the write phase to update the original data (write set) and commit.

Otherwise, the transaction aborts. However, the write phase can be

eliminated in the case of read only transactions (query).

In this section, OCCPs are classified into four categories: OCCPs

based in 2PL certification, OCCPs based on serialization graph, OCCPs

based on timestamp and integrated OCCPs. These categories are described

briefly below:

2.1 OCCPs based in Two Phase Lock (2PL) certification:

In 2PL certification protocols scheduler maintains read set for every

concurrently running transaction contains all entries read by such

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 62

transactions. And write set for every concurrently running transaction

contains new updates intended to be made by such transactions. When a

transaction Ti reaches the end of its read phase and scheduler receives a

request for commit Ti. The scheduler validates transaction Ti by looking at

the intersections between read sets RS (Ti) and write sets WS (Ti) of the

validating transaction Ti and all other concurrently running transactions Tj.

The schedule checks every concurrently running transaction Tj to

determine if RS(Ti) ∩WS(Tj), WS(Ti) ∩ RS(Tj) or WS(Ti) ∩ WS(Tj) ≠ .

If so, then this transaction has conflict and resolution policy need to be

applied. Otherwise transaction commits and removed from the set of active

transaction. [13]

In SGT a scheduler maintains a serialization graph of the history

representing the execution controls. During the execution, the scheduler

maintains the Serialization Graph (SG) by adding edges between

concurrent transactions nodes corresponding to all reads and writes

operation requested without consideration of SG being acyclic. When a

transaction Ti finishes execution and scheduler receives request for commit

Ti, it checks if Ti lies on acyclic of the SG. If so, then this indicates that

there has been a conflict operation inserted to the schedule and some

resolution policy needs to be applied to resolve this conflict. Otherwise,

there is no conflict operation. SGT scheduler provides some flexibility but

maintaining SG overhead and checking for cycles adds extra cost to this

technique [13-15].

2.3 OCCP Based on Timestamp:

In timestamp based OCCPs, a timestamp (TS) is associated to every

data item and every running transaction. This timestamp is used to ensure

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 63

serializability order after transaction has executed and ready to commit.

This simply achieved by using Timestamp rule, which defined as

following:

In the execution if some operation Oi belong to Ti precedes some

conflicted operation Oj belongs to Tj then TS(Ti) < TS(Tj), therefore, any

other conflicted operations belong to Tj not allowed to precede any

conflicted operations belong to Ti. [16-18].

Some OCCPs are designed to use timestamp intervals [19-22], This

timestamp interval is associated to every transaction, and will dynamically

adjust whenever data items are accessed. If a conflict has occurred, the

timestamp interval will be shutdown. OCCPs based on timestamps

generally show high degree of concurrency, guarantee the deadlock free

property, and provide relatively a smaller number of unnecessary rollback

overhead. In contrast, timestamp based OCCPs drawback is the large

overhead of maintaining timestamp management [21].

 2.4 Integrated OCCP:

Integrated OCCPs provide both OCC and locking techniques. This

combination was formed in order to manage aborting and blocking in a

more effective manner. The first hybrid approach was introduced in [23]

which proposed using OCC for first run and then if the transaction is rolled

back, automatically change the type to locking by inserting a lock before

each access to data item. This approach provides an advantage for long

lived transactions which are more likely to conflict and roll back with short

transaction, and in some cases may lead to starvation. Varieties of hybrid

protocols have been investigated in the literature and can be viewed in

[6, 24-29].

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 64

III. Concepts/Approaches Descriptions:

In this section we explore eighteen concepts and approaches that

should be taken into an account when designing OCCPs. These aspects and

approaches includes conflict detection, conflict resolution, starvation

problem, number of rollbacks, unnecessarily rollback, partial rollback,

transaction length, query consideration, transaction arrival rate, correctness

criteria, transaction granularity, static/dynamic schemes, silent/broadcast

commit, rerun policy, speculative CC, parallel validation, priority inversion

problem and deadline-cognizant.

3.1 Conflict Detection:

In OCC, conflicts are detected after granule access. Where checking

for serializability is done later at the validation phase. Deferent

mechanisms can be used for conflict detection proposes, such as backward

oriented optimistic concurrency control (BOCC) , forward oriented

optimistic concurrency control (FOCC), timestamps, and serialization

graphs schemes [9, 30].

- BOCC: In this scheme, intersection between the read set of a

validating transaction T and the write sets of all other concurrently running

transactions that have finished their read phase before T have to be

checked. If there is an intersection, aborting T is the only way to resolve

this conflict. [9]

- FOCC: In this scheme, intersection between the write set of a

validating transaction T and the read sets of all other concurrently running

transactions that have not yet finished their read phase, have to be checked.

If there is an intersection, one of the following resolution strategies can be

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 65

used: 1.Delay T and restart the validation phase later. 2. Abort any

transaction has a conflict with T and commits T. 3. Abort T. [9].

- Timestamp scheme: a timestamp is assigned for every granular and

transaction. In every access to granule, the transaction’s timestamp is

checked against timestamp of the last transaction that has accessed this

granule in order to satisfy timestamp order rule [16, 30].

- Serialization graph testing scheme: The concurrency control

manager maintains a serialization graph representing the execution

ordering of all transactions in the history. If a conflict occurs then a cycle

will be produced by serialization graph[13, 30].

3.2 Conflict Resolution:

Conflicts between transactions can be divided into two types:

Reconcilably Conflicting Transactions and Irreconcilably Conflicting

Transactions [31].

- Reconcilably Conflicting Transactions are transactions that have

only read-write conflicts with validating transaction; these conflicts can

serialized without any abortion.

- Irreconcilably Conflicting Transactions are transactions that have

both read-write and write-write conflicts with validating transaction. When

these conflicts occurred, then transactions are involved in a nonserializable

execution. Restarting either a validating or running transaction(s) involved

in this conflict is required. In this case, some consideration has to be taken

regarding to transaction priority, length, deadline and the amount of

transaction execution has already done and will be wasted if a transaction

aborted [21, 22, 31, 32].

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 66

3.3 Starvation Problem:

Starvation occurs when a transaction is continually rolled back due

to conflicts. Starvation is more likely to occur for long-live transactions and

for that access to same granule often. Starvation problem simply could be

resolved by giving priority to a starved transaction or blocking the whole

database to give chance for a starved transaction to commit [2]. Many

solutions in [6] [33-37] have been investigated in order to solve the

starvation problem.

3.4 Number of Rollbacks:

Restarting conflicted transactions may directly increase the

probability of having the same conflict again. So, by waiting some period

time before next restart may help to decrease the number of rollbacks.

However, delaying transactions, especially in real time systems, may cause

failure of meeting transactions deadline. By allowing transaction to restart

until they successfully commit may increase the probability of starvation

problem occurrence, especially for long transactions. [2, 16, 38]

3.5 Unnecessarily Rollback:

Conflicts between running transactions can be divided into two kinds

of conflicts; serious conflicts and non-serious conflicts.

- serious conflict is a conflict leads to unexpected results in database

state and conflict resolution has to be taken against this conflict to preserve

database consistency and integrity[33].

- Non-serious conflict is a conflict does not lead to database

inconsistency state and there is no need to restart conflicted transactions or

run conflict resolution scheme [21, 31, 33, 39, 40].

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 67

3.6 Partial Rollback:

Partial rollback is a technique to reduce wasted execution caused by

transactions rollbacks. This technique is implies rolling back only the

conflicted part of the transaction. Which consequently reduces the cost and

the time of transaction execution especially in the long transactions [41].

3.7 Transaction Length:

Long transactions have higher risk to starve than short transactions

due to two reasons:

- Long transaction needs longer execution time which increases the

chance of affection by other committed transactions.

- Long transaction accesses larger number of elements which

increases probability of confliction on these elements with other

transactions. [6, 33] Giving similar chance of committing to both short and

long transactions is an important aspect which has to be taken into

consideration.

3.8 Query consideration:

Query transactions (read only transactions) have no write phase and

have no computation overhead. Thus, giving some flexibility in the

validation phase can give great impact especially for query application.

Protocols in [2, 9, 33] have been designed to give special treatment to

query transactions in order to increase the performance.

3.9 Transaction Arrival Rate

When number of running transactions accesses the same data

elements allowed growing without restrictions. Then the number of

conflicts between these running transactions grows as will. This in

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 68

sequence increases percentage of transactions rollbacks. Therefore,

Limiting the number of running transaction that accessing the same data

elements plays an important role of reducing rollback overhead [17].

3.10 Correctness Criteria :

Serializability is the basic fundamental approach for correctness

criteria in most OCCPs [2, 9, 13, 17, 21, 41-43]. Serializability means that

there is at least one serial schedule leads to the same final state of database

[13]. However, in some circumstances weakening isolation level can have

great impact to increase transactions throughput especially in a long

transactions and read only transactions [33].

3.11 Transaction Granularity:

Transactions in OCCPs backup data items in its private workspace.

This is an extra consumption of the main memory space and the size of

data is considered as granule (Word, Page, or Object) It is an important

issue in designing OCCPs especially in case of insufficient memory [44].

3.12 Static/Dynamic data access Schemes :

Reading data from database to transactions private workspace can be

performed by two schemes: static access and dynamic access.

- Static data access scheme: all data elements will be read in the

beginning of transaction execution. This basically gives more flexibility of

designing validation mechanism. However, this helps to increase

contention in the system because data held for longer time [13, 14, 45-47].

- Dynamic data access scheme: Data elements are read one by one as

they are needed. Although, this scheme gives more complication of

designing validation mechanism, dynamic access scheme reduces data

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 69

contention compared to static access scheme because data held for shorter

time [45-47].

3.13 Silent/Broadcast Commit :

When transactions successfully finish validation and write phases,

transactions commits by one of two commitment schemes: silent commit

and broadcast commit.

- Silent commit scheme: In this scheme, a transaction becomes aware

of conflicts only at validation time. The running transactions continue

execution till the end of their read phase and enter the validation phase

[45-47].

- Broadcast commit scheme: Committed transaction advertises its

commit to all conflicted transaction in order to restart these conflicted

transactions as soon as possible. This technique avoids wasted execution

done by conflicted transactions and unnecessarily waiting. Broadcast

commit has an advantage in comparison to previous silent commit by

providing early conflict detection [45-47].

3.14 Rerun Policy :

A rerun policy is a concurrency control technique based on virtual

run [48, 49] and aims to reduce I/O restart overhead . In this technique a

transaction is allowed to continue execution even if it has conflicted and

remarked to restart. The reason is that giving this transaction chance to

prefetch all needed data to its private workspace in the memory. This

transaction then restarts as soon as it finishes first execution. In the second

run (rerun) there is no need to read again from data storage, instead, the

transaction reuse the prefetched data stored in the memory from when it

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 70

first read. Access invariant property has to be guaranteed when using this

approach. Access invariant property means that any two executions of the

same transaction must always access the same data items, even if these

executions are separated by other conflicted transactions[48, 49].

4.15 Speculative Concurrency Control (CC):

Speculative CC technique uses redundant transactions to start as

early as possible on an alternative schedule when a conflict is detected.

This redundant transaction is called a transaction shadow. If conflict in the

original transaction is resolved and successfully commits, then this

transaction’s shadow must be aborted. On the other hand, if the original

transaction fails to commit, then this transaction’s shadow is adopted,

instead from restarting original conflicted transactions from scratch, this

techniques offers better opportunity for real-time transactions to commit

within their deadline expiry. However, this advancement costs extra

memory and processing resources when transactions succeed to commit

and the other running shadow are discarded. [42, 50-58]

3.16 parallel Validation :

For implementation simplicity; transactions in the validation and

write phases executes in critical section. This particularly reduces the

parallelism [2, 6, 9, 21]. Parallelism can be increased by allowing more

than one transaction validating and committing. However, eliminates

critical section in the validation and write phase adds complexity to OCC

technique [2, 6, 33].

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 71

3.17 Priority Inversion Problem:

Transactions processing in real-time systems are priority restricted

and criticalness. Problem of priority inversion is occurs when a higher

priority transaction has to wait for execution of lower priority transaction

which has already started. This waiting may cause lose of higher priority

transaction deadline. In designing real-time OCCPs, some consideration

need to be paid to resolve such kind of problems [31].

3.18 Deadline-cognizant :

Timeliness is the primary performance measure in real-time OCCPs,

not the response time and throughput. Scheduling of concurrent

transactions based on priority consideration to minimize the number of

missed deadline transactions rather than fairness. There are many deadline-

cognizant studied in the literature [31, 59-64], in the following brief

description of four well known policies.

- OPT sacrifice policy: Used in OCCPs when validation transaction

restarts if one or more conflicting transactions have higher priority than the

validating transaction [7, 65, 66].

- No Sacrifice policy: in this policy transaction is grantee to commit

if it started the validation phase and all other irreconcilably conflicted

transaction have to be restarted as soon as conflicted has been detected[31].

- Wait-50 policy: wait-50 is compromising the two previous policies

(OPT sacrifice, No Sacrifice). Validating transaction in wait-50 policy is

delayed if more than 50% of conflicted transactions have higher priority

than the validating transaction. Otherwise it proceed execution to the write

phase [7, 65].

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 72

- Feasible sacrifices: Feasible sacrifices implies that validating

transaction which has a conflict with higher priority transaction will not be

restarted unless this validating transaction still has enough time to meet its

deadline [31]. This technique saves resources and execution time.

IV. Comparison Criteria:

Salient important eleven concepts from previous section have been

compared in table 1. These aspects include (Conflict resolution, dynamic

access schemes, Number of rollback, unnecessarily rollback, Partial

rollback, transaction length, , parallel validation, Starvation resolution,

Query consideration, broadcast commit and rerun policy.

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 73

Table 1. Shows the comparison of 2PL certification Optimistic Concurrency Control Protocols

C
a

te
g
o

ry

N

O

Y

e

a

r

Reference(s)

 Criteria

Approach

Conflict resolution

D
y

n
a
m

ic

 a
cc

e
ss

N
O

. o
f

 r
o
llb

a
c
k

U
n

n
e
c
e
ssa

rily

r
o
llb

a
c
k

P
a

r
tia

l

r
o
llb

a
c
k

T
ra

n
sa

c
tio

n

 le
n

g
th

P
a

ra
llel

 V
a

lid
a

tio
n

S
ta

r
v
a

tio
n

r
e
so

lu
tio

n

Q
u

e
ry

c
o

n
sid

e
ra

tio
n

B
ro

a
d

c
a

st

c
o
m

m
it

R
e
r
u

n

P
o

licy

2
P

L
 ce

r
tifica

tio
n

 O
C

C
P

s

1 1981 Kung H.T., Robinson J., T. [2]
Serial Validation abort validating transaction          

Parallel validation abort validating transaction          

2 1984 Theo H. [9]

BOOCC (commit or abort) validating transaction  *     *   

FOOCC
(delay or abort) validating transaction or abort

conflicted transactions
 *     *   

3 1991
Jiandong H.,John A., Krithi
R.,Don T. [6, 37]

OCCL-SVW 1- Abort conflicted transactions. 2- Abort

validating transaction if its priority < all conflicted
Ts. 3- Delay validating transaction if its priority not

the highest among conflicted transactions.

         

OCCL-PVW          

4 1991 Yu S. P., Dias M. D..[25, 67]
 OCC with broadcast
during rerun

 Rerun nonfirst run conflicted transactions   *       

5 1992
O'Neil E. P., Ramamritham K.,
Pu C. [38]

Predictable transactions
execution

If planning execution after prefetch phase could be

constructed within the deadline then transaction

grant. Otherwise transaction aborts.

         

6 1994 Rainer U. [33]

EOT marker abort validating transaction * *   *  *   

Snapshot validation
with critical section

abort validating or conflicted transaction  *        

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 74

Snapshot validation

without critical section
abort conflicted transaction  *        

7 1995 Thomasian A. [41] Checkpointing Abort conflicted transaction *  *    *   

8 2004 Wang Y., et al [68] DAEO Abort conflicted transactions *         

9 2011 Kamal S. Graham M. [69]
Later validation/ earlear

write
Abort conflicted transactions          

 - Aspect does not apply. - Aspect is applied. * - Aspect did not mention.

Table 1. (continues) shows the comparison of Serialization Graph and Timestamp Based Optimistic Concurrency Control

Protocols

C
a

te
g
o

ry

N

O

Y

e

a

r

Reference(s)

 Criteria

 Approach

Conflict resolution
D

y
n

a
m

ic

 a
cc

e
ss

N
O

. O
f

r
o
llb

a
c
k

U
n

n
e
c
e
ssa

rily

r
o
llb

a
c
k

P
a

r
tia

l

r
o
llb

a
c
k

tr
a

n
sa

c
tio

n

le
n

g
th

P
a

ra
llel

V
a

lid
a

tio
n

S
ta

r
v
a

tio
n

r
e
so

lu
tio

n

Q
u

e
ry

c
o

n
sid

e
ra

tio
n

B
ro

a
d

c
a

st

c
o
m

m
it

R
e
r
u

n

P
o

licy

O
C

C
P

s b
a

se
d

 o
n

 S
G

1 1987 Philip B., Vassos H., Nathan G. [13] Basic SGT Abort newly arrival conflicted transactions *         

2 1989 Marzullo K., [15] Priority SGT Abort less priority conflicted transactions *         

3 2000 Victor L., K.-W. L.,[14]
Conflict free

scheduling

Delay newly arrived conflicting transactions until

running conflated transactions commit
 No rollback      

O
C

C
P

s

b
a

se

d
 o

n

T
im

e
sta

m
p

 1 1987 Ryu I., Thomasian A. . [45] abort validating transaction     *     

http://www.sigmod.org/publications/dblp/db/indices/a-tree/b/Bernstein:Philip_A=.html
http://www.sigmod.org/publications/dblp/db/indices/a-tree/h/Hadzilacos:Vassos.html
http://www.sigmod.org/publications/dblp/db/indices/a-tree/g/Goodman:Nathan.html

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 75

 - Aspect does not apply. - Aspect is applied. * - Aspect did not mention.

2 1993 Lee J., Son H. S.. [21] [31] OCC-TI restart validating or conflicted transactions          

4 1995
Kwok-Wa L., Kam-yiu L., Sheung-lun
H. [17, 70]

OCC-DA restart validating or conflicted transactions *         

5 1997 Konana P., Lee J., Ram S. [43] Revised OCC-TI restart validating or conflicted transactions          

6 1999 Lindström J., Raatikainen K. [22, 40] OCC-DATI restart validating or conflicted transactions *         

7 1999 Juhnyoung L. [39] Precise serialization. Abort conflicted transactions * *        

8 2000 Lindström J. [19, 40] Revised OCC-TI restart validating or conflicted transactions *         

9 2000
Lindström J.,Raatikainen K [32, 40,

71]
RTDATI, PDATI restart validating or conflicted transactions *         

10 2002 Lindström J. [20] [40] OCC-IDATI restart validating or conflicted transactions *         

11 2004 Wang Y., et al. [68] OCC-CS Restarting conflicted transactions * *     *   

12 2005 Qilong H., Zhongxiao H.[72] MVOCC-TFD restart validating or conflicted transactions          

13 2005 Mamun Q. E. K. ,Nakazato H. [16] TS based OCC restart validated transaction          

14 2008 Bai T., Liu Y., Hu Y.[73] OCC-TSV restart validating or conflicted transactions *         

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 76

V. Analysis and Discussion:

This section presents analyses of the resulted data presented in the

previous section. It clearly shows that there is a considerable research that

effort have been done in OCC algorithms. Table 1 illustrates that weakness

aspects in some algorithms can be strong aspect in others and vice versa,

also there is a similarity in some other Aspects. But there is no one optimal

algorithm that has all criteria supported [74].

 From table 2 we identified that unnecessarily rollback criterion has

got the highest percentage of supported factor which is about 58.6%.

However, partial rollback criteria have got the lowest percentage which is

about 6.9 %. Although, number of rollback, transaction length, and parallel

validation, query consideration, broadcast commit and rerun policy criteria

have got low percentages (10.3 %, 10.0 %, 10.0 %, 13.3 %,13.3 %, 10.0 %)

respectively. The starvation resolution criteria were a little bit higher about

(23.3 %).

Table 2

 factors

Criteria

Suppor

ted

Not

supported

Not

mentioned

Percentage of

supported

Dynamic access 13 4 13 43.3 %

NO. Of rollback 3 19 7 10.3 %

Unnecessarily rollback 17 10 2 58.6 %

Partial rollback 2 27 0 6.9 %

transaction length 3 25 2 10.0 %

parallel validation 3 27 0 10.0 %

Starvation resolution 7 18 5 23.3 %

Query consideration 4 27 0 13.3 %

Broadcast commit 4 26 0 13.3 %

Rerun policy 3 27 0 10.0 %

SUM 55 210 29 18.7 %

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 77

There are many of algorithms conducted in the study (13 out of 30)

did not mention clearly what kind of data access schemes Static or

Dynamic are based on. However, 43.3 % of the algorithms conducted on

the survey were using dynamic access scheme.

From table 1 we clearly identified that although; conflicts were

resolved with deferent techniques in included algorithms. Aborting

validating transaction or conflicting transactions are the most used

schemes.

 From this analysis, we can identify that there were focus in

reduction of unnecessarily rollback resulted from non-serious conflicts,

which greatly benefit from timestamp techniques. On the other hand, there

was not enough concern about reducing the overhead caused by multiple

necessarily rollback resulted from serious conflicts.

 Criteria: number of rollback, transaction length, and parallel

validation, query consideration, broadcast commit and rerun policy got less

attention in the literature. And more work is really needed to be done on

order to add more advancement in OCC.

VI. Conclusion And future work

In this paper we have reviewed OCC techniques studded in literature

in order to identify the strengths and weaknesses aspects between them and

explore their general properties. From this revision we have concluded the

following:

 The main shortcoming of OCCPs is the both necessarily and

unnecessarily rollback overhead which is an expensive cost of the system

resources and time. The survey shows that extensive research has been

made for the sake of reduction of the unnecessarily rollback overhead

gained from timestamp ability to distinguish between serious and non-

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 78

serious conflicts. However, existence concurrency controls algorithms still

suffer a weakness in reducing multiple necessarily rollback overhead which

also may become expensive if the system faces high transactions

contention level.

Another drawback is the static OCC overhead resulted from the

techniques adopted in the existing OCCPs. This basically wastes a certain

percentage of the total execution time in the system regardless to the

contention changes. Designing a dynamic OCC that uses changeable OCC

overhead depends on the level of transactions contention is still a great

challenge.

Our future work :

In our future work we are designing an OCC algorithm capable of

adjusting concurrency control overhead in run-time execution, with careful

consideration to the level of transactions contention and overhead caused

by multiple necessarily rollbacks.

References:

1. Eswaran, K.P., Gray, J. N. , Lorie, R. A. , Traiger, I. L. , The notions of

consistency and predicate locks in a database system. Commun. ACM,

1976. 19(11): p. 624-633.

2. Kung, H.T., Robinson, J. T. , On optimistic methods for concurrency

control. ACM Transactions on database Systems, 1981. 6,2:p.213-226.

3. G., R.A.H., Scheduling real-time transactions: a performance

evaluation, in ACM Transactions on Database Systems (TODS). 1992.

p. 513-560.

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 79

4. Robert A., H.G. Scheduling real-time transactions: A performance

evaluation. in In Proceedings of the 14th International Conference on

Very Large Data Bases 1988. Los Angeles, Ca,.

5. Huang J., S.A.J., Towsley D., Ramamritham K., , Experimental

evaluation of real-time transaction processing. In Proceedings of the

lOth Real-Time Systems Symposium, 1989.

6. Jiandong H., J.S., Krithi R., and Don T.,, Experimental Evaluation of

Real-Time Optimistic Concurrency Control Schemes. Proc. 17th Conf.

Very Large Databases, 1991: p. 35-46.

7. Jayant H., M.C.M.L., Data access scheduling in Firm Real-time

database systems. Real-Time Systems Journal, 1992. 4: p. 203-241.

8. Jiandong H., J.S., Krithi R. , Priority Inheritance in Soft Real-Time

Databases. Journal of Real-Time Systems, 1992. 4(3): p. 243-268.

9. Theo, H., opservation on optimistic concurrency control systems.

Inform. Systems, 1984. 9: p. 111-120.

10. Bernstein, P.A., V. Hadzilacos, and N. Goodman, , Concurrency

Control and Recovery in Database Systems. 1987: Addison- Wesley,

Reading.

11. Papadimitriou, C.H., The serializability of concurrent database

updates, in ACM Trans. Database Syst. 1979. p. 631-653.

12. Garcia-Molina H., U.D.J., Widom J. , Database Systems: The

Complete Book. 2001: Prentice-Hall.

13. Philip B., V.H., Nathan G., Concurrency Control and Recovery in

Database Systems. 1987: Addison- Wesley, Reading.

14. L., V.L.K.-W., Conflict free transaction scheduling using serialization

graph for real-time databases, in Syst. Softw. 2000. p. 57-65.

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 80

15. Marzullo K., Concurrency control for transactions with priorities.

1989, Department of Computer Science, Cornell University, Ithaca.

16. Mamun Q. E. K. , N.H., Timestamp based optimistic concurrency

control. in TENCON2005, 2005: p. 1-5.

17. Kwok-Wa L., K.-y.L., Sheung-lun H. , Real-time optimistic concurrency

control protocol with dynamic adjustment of serialization order, in on

Proc of IEEE Real-Time Technology and Application Syniposium,.

1995. p. 174-179.

18. Victor C. S. L., K.-w.L., Sheung-lun H., , Concurrency control for

mixed transactions in real-time databases. IEEE Transactions on

Computers, 2002. 51(7): p. 821-834.

19. J., L., Extensions to optimistic concurrency control with time intervals,

in In Proceedings of 7th International Conference on Real-Time

Computing Systems and Applications. 2000, IEEE Computer Society

Press: Cheju Island, South Korea. p. 108-115.

20. J., L., Integrated and adaptive optimistic concurrency control method

for real-time databases, in International Conference on Real-Time

Computing Systems and Application. 2002.

21. Lee J., S.H.S., Using dynamic adjustment of serialization order for

real-time database systems. Proc. 14th IEEE Real-Time Systems 1993:

p. 66 - 75.

22. Lindström J., R.K. Dynamic adjustment of serialization order using

timestamp intervals in real-time databases. in In Proceedings of the 6th

International Conference on Real-Time Computing Systems and

Applications,IEEE Computer Society Press. 1999.

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 81

23. Georg, L. Concurrency control in data base systems: A step towards

the integration of optimistic methods and locking. in In Proceedings of

ACM ‘82. ACM. 1982. New York.

24. Haran B., I.H., Towards a self-adapting centralized concurrency

control algorithm, in n SZGMOD 84. ACM, New York. 1984. p. 18-31.

25. Yu S. P., D.M.D., Analysis of hybrid concurrency control schemes for a

high data contention environment, in in IEEE Trans. Software Eng.

1992. p. 118-129.

26. Lam K., S.H.S., Hung S., A priority ceiling protocol with dynamic

adjustment of serialization order, in In 13th IEEE Conf. on Data

Engineering (ICDE’97). 1997: Birmingham.

27. Graham P., B.K. Effective Optimistic Concurrency Control in

Multiversion Object Bases. in In Proceedings of International

Symposium on Object Oriented Methodologies and Systems (ISOOMS).

1994.

28. Sang H. Son, J.L.Y.L., Hybrid Protocols Using Dynamic Adjustment of

Serialization Order for Real-Time Concurrency Control. Real-Time

Systems Journal, 1992. 4: p. 269-276.

29. Sang S., J.L., A new approach to real-time transaction scheduling, in

Proceedings of Fourth Euromicro workshop on Real-Time Systems.

1992: Athens, Greece. p. 177-182.

30. Yu S. P., W.K., Lin K., SON H. S. , On Real-Time Databases:

Concurrency Control and Scheduling, in In Proceedings of IEEE.

1994. p. 140-57.

31. J., L., Concurrency Control Algorithms for Real-Time Database

Systems. PhD Dissertation January 1994, University of Virginia.

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 82

32. Lindstrom J., R.K., Using Importance of Transactions and Optimistic

Concurrency Control in Firm Real-Time Databases, in Proc. 7th

International Conference on Real-Time Systems and Applications

(RTCSA '00). 2000: Cheju Island, South Korea. p. 12-14.

33. U., R., Optimistic Concurrency Control Revisited. Arbeitsbericht

Institut f ¨ur Wirtschaftsinformatik der Westf¨alischen

WilhelmsUniversit¨at M¨unster, 1994.

34. Peinl, P., Reuter, A. , Empirical comparison of database concurrency

control schemes, in Proceedings of the 9th Znternutionul Conference

on Very Large Data Bases. 1983: Florence. p. 97-108.

35. Pradel, U., Schlageter, G. , Unland, R. Redesign of optimistic methods:

Improving performance and availability. in In Proceedings of the 2nd

International Conference on Data Engineering IEEE Computer Society

Press. 1986.

36. Thomasian., E.R.a.A. A New Distributed Optimistic Concurrency

Control Method and a Comparison of its Performance with Two-Phase

Locking. in In Proceedings of Tenth ICDCS. 1990.

37. Jiandong H., J.S., Concurrency Control in Real-Time Database

Systems: Optimistic Scheme vs. Two-Phase Locking, in A Technical

Report , COINS 90-66. 1990, University of Massachusetts.

38. Patrick O., K.R.C.P., Towards predictable transaction executions in

real-time database systems. 1992: Amherst.

39. L., J., Precise serialization for optimistic concurrency control. Elsevier

Science B.V. The Netherlands, 1999. 29(2): p. 163-179.

40. J., L., Optimistic Concurrency Control Methods for Real-Time

Database Systems, S.o.P.A.R. A-2003-1, Editor. 2001, University of

Helsinki Department of Computer Science.

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 83

41. Thomasian A., Checkpointing for optimistic concurrency control

methods. Knowledge and Data Engineering, IEEE Transactions on,

1995. 7(2): p. 332-339.

42. B., A., Speculative Concurrency Control: A position statement.

Technical Report TR-92-016. 1992, Computer Science Department,

Boston University, Boston.

43. Konana P., L.J., Ram S., Updating timestamp interval for dynamic

adjustment of serialization order in optimistic concurrency control-

time interval (OCCTI) protocol. Elsevier Science B.V. , 1997: p. 189-

193.

44. Harris T., L.J., Rajwar R., Transactional Memory, ed. M.D. Hill. 2007.

45. Ryu I., T.A., Performance analysis of centralized databases with

optimistic concurrency control. Elsevier Science Publishers B. V.,

1987. Volume 7(Issue 3).

46. Alexander, T. Analysis of some optimistic concurrency control schemes

based on certification. in In Proceedings of the 1985 SIGMETRICS

Conference on Measurement and Modeling of Computer Systems.

1985.

47. Theodore, J., Analysis of Optimistic Concurrency Control Revisited.

1992.

48. Franaszek P., R.J., Thomasian A. , Concurrency control for high

contention environments. ACM Trans. Database Syst. 17 No.2, 1992: p.

304-345.

49. Peter F., J.R., Alexander T. Franaszek A. P., Robinson T. J.,

Thomasian A. , Access invariance and its use in high contention

environments, in Proc. 6th Intl. Conf on Data Engineering. 1990: Los

Angeles. p. 47-55.

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 84

50. Bestavros A., B.S., SCC-nS: a Family of Speculative Concurrency

Control Algorithms for Real-Time Databases, in Proc. Third Int'l

Workshop Responsive Computer Systems. 1993.

51. B., A., Speculative Concurrency Control, in Technical Report TR-93-

002. 1993, Computer Science Department, Boston University, Boston.

52. Bestavros A., B.S., Time liness via speculation for real-time databasees

in In Proceedings of RTSS'94: The 14th IEE Real-Time System

Symposium. 1994: San Juan , Puerto Rico.

53. Bestavros A., B.S., Value-cognizant speculative concurrency control, in

In Proceed- ings of VLDB ' 9 5 : The International Conference on Very

Large Databases. 1995: Switzerland.

54. Bestavros A., B.S., Value-cognizant speculative concurrency control

for real-time databases. Information Systems, 21(1):75-101 (1996). ,

1996. 21: p. 75-101.

55. Jun C. Yan_Li Z., Y.S.G., A New Speculative Concurrency Control

Protocol and The Analysis base on Petri Net, in Computer Engineering

and Applications. 2009. p. 121-123.

56. Juna C., Y.f.W., Jian_ping W., Concurrency Control Protocol for Real-

Time Database and The Analysis Based on Petri Net. Advanced

Materials Research 2011. 143-144: p. 12-17.

57. Azer B., S.B., Euthimios P., Performance Evaluation of Two-Shadow

Speculative Concurrency Control. 1993, Boston University.

58. Haubert, J., B. Sadeg, and L. Amanton. Improving the SCC protocol

for real-time transaction concurrency control. in Signal Processing

and Information Technology, 2003. ISSPIT 2003. Proceedings of the

3rd IEEE International Symposium on. 2003.

ــ Dr. Kamal M. Solaiman & et.al.,

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 85

59. Datta A., S.H.S., Kumar V., Limitations of priority cognizance in

conflict resolution for firm real-time database systems. IEEE

Transaction on Computers 49 2000: p. 483-501.

60. C., J.H.M.L.M., Earliest deadline scheduling for real-time database

systems, in Proc. 12th Real-Time System Symp. 1991.

61. Liu, C., L ., Layland, J., W . , Scheduling Algorithms for

Multiprogramming in a Hard Real Time Environment. In Journal of

ACM, 1973. 20: p. 46-61.

62. L., J.H.M.C.M., Value-based scheduling in real-time database systems,

in VLDB J. 1993.

63. Jayant H., M.C., Miron L., On Being Optimistic about Real-Time

Constraints, in Proceedings of the 1990 ACM SIGACT-SIGART-

SIGMOD Symposium on Principles of Database Systems (PODS).

1990. p. 331-343.

64. Robert A., H.G., Scheduling real-time transactions: a performance

evaluation. ACM Transactions on Database Systems (TODS), 1992.

17(3): p. 513-560.

65. Jayant H., M.C.M.L., Dynamic Real-Time Optimistic Concurrency

Control, in Proceedings of the 11th IEEE Real-Time Systems. 1990:

Orlando, Florida. p. 94-103.

66. Lee J., S.H.S., Performance of concurrency control algorithms for real-

time database systems, in Performance of concurrency control

mechanisms in centralized database systems, K. Vijay, Editor. 1995,

Prentice-Hall, Inc. p. 429-460.

67. Philip Y., D.D., Performance analysis of optimistic concurrency

control schemes with different rerun policies, in in Proceedings of the

Fifteenth Annual International. 1991: Japan. p. 294 - 300.

Tradeoff in Optimistic Concurrency Control Algorithms ــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــ

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017. 86

68. Wang Y., W.Q., Wang H., Dai G. Dynamic adjustment of execution

order in real-time database. in In Proceedings of 18th International

Parallel and Distributed Processing Symposium. 2004.

69. Kamal S., G.M., Later Validation/Earlier Write: Concurrency Control

for Resources-Constrained Systems with Real-Time properties, in 30th

International Symposium on Reliable Distributed Systems. 2011:

Madrid.

70. Lam K., L.K., Hung S., Optimistic Concurrency Control Protocol for

Real-time Databases. Elsevier Science Inc., 1997. 38: p. 119-131.

71. Lindström J., R.K., Using real-time serializability and optimitic

concurrency control in firm real-time database. , in in proceedings of

the 4th IEEE International Baltic Workshop on DB and IS Baltic DB

IS'2000. 2000. p. 25-37.

72. Qilong H., Z.H., Real-time Optimistic Concurrency Control based on

Transaction Finish Degree. Journal of Comuter Science, 2005: p. 471-

476.

73. Bai T., L.Y., Hu Y., Timestamp vector based optimistic concurrency

control protocol for real-time databases, in in Wireless

Communications, Networking and Mobile Computing 2008. WiCOM

’08. 4th International Conference. 2008. p. 1-4.

74. C., M., Less Optimism About Optimistic Concurrency Control, in In

Proceedings of the Second International Workshop on Research Issues

on Data Engineering: Transaction and Query Processing. 1992. p.

199-204.

