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ABSTRACT: 

Results of cooled and hot symmetric nuclear matter calculations are 
presented. The Brueckner – Hartree –Fock (BHF) approximation  plus two 
body density dependent Skyrme potential which is equivalent to three body 
interaction are used. Argonne v18  nucleon-nucleon (NN) potential is used 
in the framework of (BHFA) . 

The bulk properties of symmetric nuclear matter are computed such 
as the EOS at (T = 0, 8, 12 MeV), pressure at (T = 0, 8, 12 MeV),  nuclear 
matter incompressibility and the symmetry energy. The results are 
compared with M. Baldo and L. S. Ferreira (year) (BL) calculation.  

Good agreement is obtained in comparison with previous theoretical 
estimates and experimental data. 
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INTRODUCTION: 

       On a microscopic basis the equation of state (EOS) of symmetric 
nuclear matter has been extensively studied within the variational approach 
[1–3] as well as relativistic [4–10] and non relativistic [11, 12] Brueckner–
Hartree–Fock (BHF) theories.  The predictions of non relativistic 
microscopic approaches (including both the BHF and variational 
approaches) based on pure two-body nucleon–nucleon (NN) forces (2BF) 
do not give the empirical saturation point of symmetric nuclear matter 
(Coester band  [13]). In order to improve the nuclear saturation, two lines 
have been followed. One is the development of the relativistic mean field 
(RMF) theory [14] and Dirac–Brueckner–Hartree–Fock (DBHF) approach 
[5, 15–19]. The DBHF has been successful in describing the saturation 
properties of symmetric nuclear matter (SNM), however, still there are 
some problems remaining unsettled, such as the negative energy state 
problem, the ambiguities related to the decomposition of the effective  

reaction matrix into covariant amplitudes due to various 
approximations introduced for reducing the four-dimensional Bethe–
Salpeter equation to the corresponding three-dimensional one. In the 
second line the medium effects are taken into account by 
phenomenological or microscopic three-body forces (3BF) within non-
relativistic contexts. Calculations with phenomenological 3BF have been 
performed both in the framework of the variational approach [1, 2] and the 
BHF approximation [20–23]. The basic input quantity in the BHF 
calculation is the  NN  interaction in free space. In the previous work [24] 
using BHF we adopted  the modern Argonne v18 potential  [26], and 
charge-dependent Bonn potential (CD-Bonn) [27]. The recent versions of 
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The Nijmegen group are Nijm-I, Nijm-II, and Reid93 potentials. In the 
present work we add the corrections of the three-body forces using an 
equivalent density dependent two body forces of Skyrme type. Hot systems 
are also considered for small temperatures.  In the next section we give a 
brief description of the method of calculation. Section 4 is devoted for a 
presentation of our main results.  
  
THEORY: 
      Here we start with a short review of the theoretical framework: 

The microscopic Brueckner–Bethe–Goldstone description of nuclear 
matter is based on a linked cluster expansion of the energy per nucleon of 
nuclear matter [28]. 

The basic ingredient is the Brueckner reaction matrix G, which is the 
solution of the Bethe–Goldstone equation : 
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Here, ω is the starting energy which is usually the sum of the single-
particle energies of the states of the interacting nucleon 

     ω = e (k) + e (k').                                                                      (2)      
V is the bare NN potential, η is an infinitesimal small number, Ho is 

the unperturbed energy of the intermediate scattering states, e is the single-
particle energy, and Q is the Pauli projection operator; it projects out states 
with two nucleons above the Fermi level, it is given by: 

Q (k, k') = (1– Өf (k)) (1– Өf (k')),                                                 (3) 
where Өf (k) = 1 for k < kf  and zero otherwise, Өf (k) is the 

occupation probability of a free Fermi gas with Fermi momentum kf 
In the Brueckner–Goldstone expansion, the average binding energy per 
nucleon is expanded in a series of terms as the following: 
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where |kk' > refer to antisymmetrized two-body states. This first 
order is known as the Brueckner–Hartree–Fock (BHF) approximation. To 
completely determine the average binding energy one has to define the 
single-particle potential U (k) which contributes to the single-particle 
energies appearing in the G-matrix elements. The structure of the 
expression (4) suggests choosing the following BHF single-particle 
potential                                                                                                    
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where ρ is the matter density.The G-matrix itself depends on U (k) 
through the starting energy ω, defined in Eq. (2), and the lowest-order 
approximation (4) along with choice (5) for the single-particle potential is 
often known as the lowest-order Brueckner theory.            The single 
particle energy e (k) is defined as .  
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where T is the kinetic energy. The conventional choice for the single-
particle potential has been to take the BHF potential (Eq. (5)) for hole 

states (k < kf)  and zero for particle states (k > kf), thus introducing a  
 

(                  8) 
 
 
 

Eqs. (1) and (7) represent the main equations that one has to solve 
self-consistently. In order to achieve saturation in nuclear matter one has to 
add three-body interaction terms or a density-dependent two-nucleon 
interaction. We have chosen it following the notation of the Skyrme 
interaction to be of the form 

)()
i
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where r1 and r2  are the position vectors for the particle 1 and particle 
2 respectively, Pσ is the spin exchange operator,  ρ is the matter density  ti  
,yi, and αi are parameters. For various values of αi  (typically αi = 1/3, 2/3, 
0.5, and 1) we have fitted t i and  yi in such a way that a 

BHF calculation plus the contact terms yield the empirical saturation 
point for symmetric nuclear matter. Having obtained the energy per particle 
E/A for zero temperature, the free energy  F = E/A - aT 2    and the pressure 
may be calculated at temperature T using the expression of the level density 
[29]. Among the different sets of parameters αi proposed here the best 
results were obtained for two terms of the above summation where α1 and 
α2 are equal to 1/3 and 2/3 respectively.  
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Results and discussion: 
1. Calculation of the EOS: 
     The EOS is the relationship between energy per nucleon and Fermi 
momentum kF or density, the minimum point of the EOS curve is called the 
saturation point. The results are shown in the Fig. 1 at  T=0, 8 and 12 MeV 
where the energy per particle (F / A) in MeV plotted against density ρ in 
fm-3, for symmetric nuclear matter using  Argonne v18 potential and the 
parameters of the contact potential are given in table (1). A comparison is 
made with M. Baldo and L. S. Ferreira (BL) calculation [30] v 14+TNI 
realistic potential. The results are identical with BL at small densities.          

Table. (1): Interaction Parameters of Argonne v18 potential: 
t1 t2 y 1 y 2 

-1168.6 1887.6 0.6643 -0.2168 

 
Fig. 1. F/A of  symmetric nuclear matter as a function of density at (T=0, 8 and 12 MeV 

using Argonne v18 potential. 
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2. Calculation of the free energy: 
      The free energy of the nuclear matter is defined by: 

F = ET=0  - a T 2                                                                        (10) 

a =(π2 /2) (m*/ħ2 k2 
F)                                                              (11) 

where F is the free energy of the system, ET=0 is the total energy at 
T=0, and a is the level density of the system. where m* is the effective mass 
of the nucleon. . The results are shown in the Fig. 2 at  T=0 in comparison 
with M. Baldo and L. S. Ferreira (BL) calculation [30].  

 
 

Fig. 2. F / A in MeV for symmetric nuclear matter at (T=0) as a function of density 
using Argonne v18 potential in comparison with BL calculation [30]. 
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3. The pressure: 
The pressure for symmetric nuclear matter at T=0 is defined in terms 

of the energy per particle as:  

     

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P                                                      (12)   

The results are shown in fig. 3, where the values of the pressure at 
(T=0) are plotted against the density ρ for symmetric nuclear matter using 
the Argonne v18 potential.  

At T=8 and 12 MeV we have used the equation (12) in equation (10) 
for calculating the pressure, The results are shown in Figs. 4 and 5, where 
the values of the pressure at T=8 and 12 MeV are plotted against the 
density ρ for symmetric nuclear matter. The results are very close to the BL 
calculation at small densities. using the Argonne v18 in comparison with BL 
calculation. Satisfactory agreement is obtained getting the same shape and 
comparable values with the realistic potential calculation at zero 
temperature. 

 
Fig. 3. The pressure of symmetric nuclear matter at (T = 0) as a function of density 

using Argonne v18   potential  in comparison with BL calculation [30]. 
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Fig. 4. The pressure of symmetric nuclear matter at (T =  8 MeV) as a function of 
density using Argonne v18   potential for  in comparison with BL calculation [30]. 

 
Fig. 5. The pressure of symmetric nuclear matter at (T = 12 MeV) as a function of 
density using Argonne v18   potential for  in comparison with BL calculation [30]. 
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4. Symmetry energy: 
      The symmetry energy is defined as:      
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where ατ is neutron excess parameter. 
            

In Fig. 6 , the symmetry energy in MeV is plotted against the density 
in[ fm-3], and compared with the experimental data [31] using the Argonne 
v18 potential. The calculations yield similar results with the experimental 
data at all values of the density. From the fig. 6, one can see that the 
nuclear symmetry energy increases with increasing the density. 

 
 

Fig. 6.  The symmetry energy in [MeV] as function of density in [fm-3] is compared by 
exp. data [31] using Argonne v18 potential. 
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5. Nuclear matter incompressibility:  
The incompressibility κ 0 [32] can be calculated from the following 

equation:                                                                                                
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The incompressibility ο  can be used to explain the stiffness of the 
EOS. The experimental value of the incompressibility of nuclear matter at 
its saturation density ρ0 has been determined to be 210 ± 30 MeV [33] the 
incompressibility ο  is calculated with a 4-th degree polynomial. In fig. (7), 

ο in MeV is plotted against the density in [fm-3] using the potential 
Argonne v18 potential.  

 
Fig. 7.  The nuclear matter incompressibility κ (ρ) in MeV as a function of density using 

Argonne v18  potential. 
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Conclusion: 
This paper presented a calculation of the EOS for symmetric nuclear 

matter, the symmetry energy, and the pressure of nuclear matter at zero and 
finite small temperatures. The results are obtained by adding a density-
dependent two-body potential to the BHF calculation.  

Modern NN interactions as the Argonne v18 potential is used in the 
framework of BHF approximation. The results are compared to the 
v14+TNI realistic potential calculation of B L. we conclude that the BHF 
theory in addition to our suggested contact interaction is able to produce  
the experimental saturation point for the equation of state and overall good 
agreement with the realistic force calculation of BL for T=0. Good 
agreement is obtained for the energy per particle, pressure, free energy, and 
the symmetry energy with the theoretical BL [30] and experimental data 
Shetty et al [31].  

Comparable results are obtained for finite temperatures. Two terms 
are used only in our suggested potential but one can add other terms to 
calculate other physical quantities. In this case the treatment will be more 
involving. 
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