A Facile Syntheses of 3-(quinolin-3-ylamino) isobenzofuran-1(3H)-one

Dr.Abdul hakem. R. Betrow Chemistry Department Faculty of Education, Dr. Khairi. M. Hamza Di Chemistry Department H Faculty of Education, Zawia University

Dr. Khaled. T. Elozi Physics Department Faculty of Science Dr. Esmail. O. Elakesh Chemistry Department Faculty of pharmacy

Abstract :

In this study, a simple one-pot reaction between 3-aminoquinoline and 2-formylbenzoic acid in methanol at 24^{0} C affords the corresponding phthalide (3-(quinolin-3-ylamino) isobenzofuran-1(3*H*)-one in high yields. The structure of the desired product was confirmed from their (NMR) and (IR) spectral data.

- 5 -	University Bulletin –	ISSUE No.16-	Vol. (3) July - 20	14.
-------	-----------------------	---------------------	--------------------	-----

Introduction:

The phthalide (Isobenzofuran-1(3H)-one) ring system (I) and its derivatives(II) are of interest not only because it is present in some natural products¹ but also are known to possess biological activities as, antihemolytic², antiallergic², antirheumatic², anti-inflammatory³, antihypertensives⁴, antiarrhythmias⁵, antiasthmatic⁶, anticonvulsant⁷, and vasorelaxant⁸, in addition some of them have industrial application⁹

X = NHR, OH, OR.

In previous Study^{10,11}, we found that in the reaction of 2-formylbenzoic acid with secondary amines like N-methyl and N-phenylaniline afforded products, in which amination occurs at C-3 position while the reaction of diisopropyl amines as example of secondary aliphatic amines with 2-formylbenzoic acid afforded N,N-diisopropyl(o-formylbenzamide) this compound resulted from the nucleophlic addition reaction of the amine at C-1 of the phthalide, on the other hand, 2-formylbenzoic acid can react with primary heterocyclic amines and afford products, in which amination occurs at C-3 position.

- 6 - University Bulletin – ISSUE No.16- Vol. (3) July - 2014.

In these study we thought of reacting 2-formylbenzoic acid (I) with 3-aminoquinoline as example of new polycyclic heterocyclic amines.

Experimental:

All melting points were measured on electrotherrmal melting point apparatus (FP80), and were uncorrected. Infrared spectra (IR) were measured using FTIR Spectrophotometer. Proton nuclear magnetic resonance spectra (¹H-NMR) were measured using a Bruker operating at 300 MHz Spectrometer, with tetramethylsilane (TMS) as standard and chemical shifts were recorded in ppm.

Reaction of 2-Formylbenzoic acid with 3-aminoquinoline:

A mixture of 2-formylbenzoic acid (1.5g, 0.01mole) and equimolar amount of 3-aminoquinoline (1.4g, 0.01mole) in methanol (20ml) was refluxed for about 1 hr, and then cooled. The separated solid was collected.

Results And Discussion:

The condensation of 2-formylbenzoic acid with 3-aminoquinoline in refluxing methanol afforded a crystallisable solid product the analytical data of isolated phthalide given in Table-1. (TLC) of the crude product indicating the presence of one single component.

- 7 - University Bulletin – ISSUE No.16- Vol. (3) July - 2014.

The IR spectra of isolated compound fig.(03) shows the presence of two strong absorption bands at (3310 cm^{-1}) and at (1735 cm^{-1}) . The former can be attributed to NH stretching, while the second is due to the presence of a lactonic group.

The ¹H-NMR spectra (CD₃OD) of the product (fig.01and 02) shows the presence of one proton singlet at δ : 7.16 due to phthalidyl proton (H-3) and a multiplet at δ 7.50-7.93 due to ten aromatic proton and at δ 8.57 a broad singlet exchange with D₂O due to NH proton

These results rule out the possibility of Schiff base formation of type (B) and clearly indicate the formation of N-(3-phthalidyl)-amine of type (A). These compounds can only arise if the 3-aminoquinoline reacts with the lactol forn of the acid through $S_N 2$ nucleophilic substitution reaction on carbon No.3 The deshielding of H-3 in these compounds, compared with CH-N alkyl analogs can be attributed to the anisotropic effect caused by the hetero-aromatic ring.

The product of the closed form of the acid can be explained according to the following proposed mechanism.

- 8 -	University Bulletin – ISSUE No.16- Vol. (3) July - 2014.	
-------	--	--

Fig. (01) The ¹H-NMR spectra of 3-(quinolin-3-ylamino) isobenzofuran-1(3*H*)-one in (CD₃OD).

- 9 - University Bulletin – ISSUE No.16- Vol. (3) July - 2014.	
--	--

Fig. (02) The ¹H-NMR spectra of 3-(quinolin-3-ylamino) isobenzofuran-1(3*H*)-one in (CD₃OD), D₂O added.

Fig. (03) The IR spectra of 3-(quinolin-3-ylamino) isobenzofuran-1(3H)-one.

- 10 -	University Bulletin – ISSUE No.16- Vol. (3) July - 2014.
--------	--

Table (1) Analytical data of phthalide 3-(quinolin-3-ylamino) isobenzofuran-1(3H)-one.

phthalide	Molecular formula	Yield	Melting point	Solvent for crystallization
		(%)	(°C)	
3-(quinolin-3-	$C_{17}H_{12}N_2O_2$	89	184-185	Methanol
ylamino)				
isobenzofuran-				
1(3 <i>H</i>)-one				

Table (2) Spectral data of phthalide 3-(quinolin-3-ylamino) isobenzofuran-

1(3*H*)-one.

phthalide	Infrared (cm ⁻¹)	Н-3	¹ H-NMR (CD ₃ OD,TMS,PPM) Aromatic protons
3-(quinolin-3- ylamino) isobenzofuran- 1(3 <i>H</i>)-one	(N-H)3310 (C=O) 1735 (C=C) 1615	7.16	7,50-7.93 (m, 10H) 8.57(s,NH)

References:

- 1- Kawai, Hajime, F. Hidcaki, Brit. UK Pat, No. 2, 257, 993, C. A.119. 25969j (1993).
- 2- K. Sempuku, pat, JP. 80, 145, 652, 12 May 1979. C.A. 94. 208564k (1980).
- 3- K. Sempuk, pat, Jpn. 58, 41, 865, (1981), C. A. 99. 122300n (1983).
- 11 University Bulletin ISSUE No.16- Vol. (3) July 2014.

- 4- J.R. Gigey, pat, Fr. No 1.297, 110, (1962), C.A. 58, 9028 c (1963).
- 5- Nakgawa. A. Pat, Jpn. 61, 271, 273. C.A. 106. 138252X. (1987).
- 6- Y.P. Feng, D.Hu, L.Y.Zhang, Acta Pharm.Sinica. 1995, 30 (6), 741.
- 7- S.Y.Yu, S.Q.You, Acta Pharm. Sinica., 1984, 19 (8), 566.
- 8- D. Tsi And B.K.H.Tan, Phytotherapy Research, 1997, 11, 576.
- 9- M.Satoyuki, T. Mitsuqi, pat, jp. No. 6187, 758, (1986), C.A. 105, 192872S (1986).
- 10-A. R. Betrow, K. M. Hamza and R. M. Tarhouni, Reaction 2-Carboxybenzaldehyde with Aniline and its derivatives. Part III, Zawia University, Bulletin, Number (15 – Vol. 3), 2013.
- 11-A. R. Betrow, K. M. Hamza and R. M. Tarhouni, Reaction of 2-Carboxybenzaldehyde with Aliphatic Primary and Secondary Amines. Part II, Zawia University Bulletin, Number (14), 2012.

- 12 - University Bulletin – ISSUE No.16- Vol. (3) July - 2014.